terça-feira, 1 de janeiro de 2019




O Monopolo Magnético de Dirac.

Em virtude da assimetria apresentada pelas equações de Maxwell, o físico inglês Paul Adrien Maurice Dirac (1902-1984; PNF, 1933), em 1931 (Proceedings of the Royal Society of London A133, p. 60), usou o argumento da simetrização dessas equações para propor a existência do monopolo magnético. Assim, segundo Dirac, para contemplar esse monopolo, essas equações deveriam tomar a seguinte forma, hoje conhecida como equações de Maxwell-Dirac (Sistema CGS):
Lei de Coulomb (1785) :  
Lei de Ampére (1820)-Maxwell (1865) : 
Lei de Peregrinus (1269)-Dirac (1931) :  
Lei de Faraday-Henry (1831)-Dirac (1931) ; 
 onde  é a densidade de carga elétrica é a densidade de carga magnética é a densidade de corrente elétrica e densidade de corrente magnética. Para calcular o valor da carga magnética g, Dirac usou a Mecânica Quântica que havia sido desenvolvida a partir de 1926. Segundo essa Mecânica, a evolução de uma partícula é traduzida por uma função de onda  afetada por um fator de fase imaginária multiplicativo que não intervém nas medidas das grandezas observáveis daquela partícula. Assim, quando esta se desloca de um lugar para o outro, a diferença nos fatores de fase entre a partícula e a chegada de um lugar para o outro, a diferença nos fatores de fase entre a partida e a chegada da partícula serão idênticas. Com esse argumento simples, Dirac obteve as equações de Maxwell-Dirac (vistas acima) como conseqüência da restrição impostas àquelas variações de fatores de fase, bem como fez a predição do valor de g por meio da relação:  () onde e é a carga do elétron e  =  h/2, sendo h a constante de Planck. É oportuno salientar que o físico norte-americano John David Jackson (n.1925) em seu famoso livro Classical Electrodynamics (John Wiley & Sons, 1992) apresenta um argumento semiclássico para encontrar a condição de quantização Diraciana indicada acima, considerando o movimento de um elétron em um campo de um monopolo magnético constante.
                   Apesar da “estética simetria matemática” das equações de Maxwell-Dirac, elas apresentavam uma grande dificuldade, uma vez que não eram compatíveis com a observação experimental de que as linhas de força de  são fechadas, fato esse traduzido pela expressão integral:  (ou, equivalentemente,  ). Para contornar essa dificuldade, ainda no artigo de 1931, Dirac propôs que o monopolo magnético encontra-se no fim de uma "linha" - linha de Dirac – formada de dipolos magnéticos (ou, equivalentemente, de um solenóide delgado de espiras bem próximas), que se estende até o infinito e que, no entanto, ainda segundo Dirac, um elétron não a poderia cruzar. Tal “linha”, cuja orientação a priori não pode ser definida, não tem efeito detectável. Registre-se que, em 1948 (Physical Review 74, p. 817), Dirac tratou da não-observabilidade de suas “linhas”. 
                   
Note-se que uma interpretação topológica para essa “linha Diraciana” foi apresentada pelos físicos chineses Tai Tsu Wu (n.1933) e Chen Ning Yang (n.1922; PNF, 1957) em um artigo publicado em 1975 (Physical Review D12, p. 3845). Nesse artigo, no qual trataram a Eletrodinâmica Quântica como um invariante “gauge” de um fator de fase não-integrável, eles mostraram que não são os campos elétrico () e magnético (), e nem os potenciais elétrico () ou vetor () que descrevem os meios eletromagnéticos, mas sim um fator de fase como sendo responsável pelos fenômenos eletromagnéticos e de maneira unívoca. Assim, ao escolherem um sistema de coordenadas conveniente, comprovaram que a linha de Dirac nada mais é do que a “projeção” de um monopolo magnético do mesmo modo que, em Cartografia, o planisfério tem os pólos terrestres representados por linhas e não por pontos. Nessa situação, muito embora as “calotas esféricas” que envolvem o monopolo magnético tenham os potenciais eletromagnéticos com valores diferentes, existe, no entanto, uma função que transforma esses potenciais, passando de um para o outro sem mudar o fator de fase    
A proposta do monopolo magnético levou a seguinte questão: como ele poderá ser detectado? Segundo nos fala o físico brasileiro Iosif Frenkel (n.1944) em seu livro Princípios de Eletrodinâmica Clássica (EDUSP, 1996), um dos métodos básicos para a detecção de um monopolo magnético será por intermédio do estudo dos traços de ionização que ele deixa quando interage com a matéria. Contudo, como sua massa é muito alta ( () a sua detecção envolve altas energias que só são conseguidas em experiências com os raios cósmicos remanescentes da formação de nosso Universo, por ocasião do Big-Bang. É oportuno destacar que a estimativa dessa alta massa do monopolo magnético foi apresentada, em trabalhos independentes realizados em 1974, pelos físicos, o holandês Gerardus ´t Hooft (n.1946; PNF, 1999) (Nuclear Physics B79, p. 276) e o russo Alexander Polyakov (Journal of Experimental and Theoretical Physics: Letters 20, p. 194), ao estudarem a unificação entre as forças eletromagnética, fraca e forte, a hoje conhecida Teoria da Grande Unificação (TGU), formulada em 1974. Destaque-se também que, nessa Teoria, o próton (p) é uma partícula instável, com uma vida média da ordem de 1031 anos (lembrar que a idade do Universo, até o presente momento, é considerada ser da ordem de 1010 anos), podendo decair, segundo artigos independentes publicados em 1982, por Vladimir Rubakov (Nuclear Physics B203, p. 311) e Curtis G. Callan (Physical Review D25, p. 2141), em um monopolo magnético (M), pósitron (e+) e neutrino do pósitron (), isto é: 
                   Uma primeira experiência realizada para detectar o monopolo magnético foi realizada, em 1975 (Physical Review Letters 35, p. 487), pelos físicos norte-americanos P. B. Price. E. K. Shirk, W. Z. Osborne e L. S. Pinsky, na qual examinaram o traçado deixado por uma partícula cósmica em um arranjo experimental constituído de um detector de Cherenkov (que mede a velocidades das partículas) e de placas com emulsões nucleares, colocados em um balão a grandes altitudes. O exame desse evento levou Price e colaboradores a aventarem a hipótese de que haviam detectado um monopolo magnético com a carga g = 175e. Porém, nesse mesmo ano de 1975 (Lawrence Radiation Laboratory, Physics, Note 4260), o físico norte-americano Luís Walter Alvarez (1911-1988; PNF, 1968) descartou a hipótese de que a equipe de Price havia detectado um monopolo magnético, uma vez que o traço deixado na emulsão era semelhante ao de um núcleo pesado. Em 1982, o físico norte-americano Blas Cabrera idealizou um outro tipo de experiência para detectar monopolos magnéticos fósseis, usando a seguinte idéia. Segundo Cabrera, quando um monopolo magnético atravessa um detector supercondutor há o estabelecimento de uma supercorrente e as equações de Maxwell-Diracprevêem uma variação do fluxo magnético devido a essa travessia, fluxo esse cujo valor é bem determinado e é igual a duas vezes a carga magnética do monopolo magnético (em unidades convenientes para esse fluxo). Contudo, como esse fluxo é pequeno demais, da ordem de 10-6 do campo magnético terrestre por cm2, acrescido do fato de que o fluxo de monopolos magnéticos incidentes sobre a Terra é da ordem de 10-10/cm2.s, a detecção de um monopolo magnético é extremamente sensível. Em vista disso, Cabrera projetou uma experiência, que levou 150 dias para ser realizada, envolvendo um SQUID (“Superconductive QUantum Interference Device”) que mede a carga magnética do monopolo magnético independentemente de sua velocidade, massa, carga elétrica, ou mesmo momento de dipolo elétrico. Assim, em artigo publicado ainda em 1982 (Physical Review Letters 48, p. 1378), Cabrera anunciou que havia detectado um monopolo magnético com a carga g prevista por Dirac. Para outros detalhes sobre os monopolos magnéticos, ver os seguintes artigos: Paul Musset, La Recherche 146, p. 946, Juillet-Aôut (1983); Richard A. Carrigan Jr. and W. Peter Trower, Nature 305, p. 673.   


equações de Maxwell-Dirac (Sistema CGS) no sistema decadimensional e categorial Graceli.

Lei de Coulomb (1785) :  
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Lei de Ampére (1820)-Maxwell (1865) : 
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




Lei de Peregrinus (1269)-Dirac (1931) :  
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Lei de Faraday-Henry (1831)-Dirac (1931) ;       
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D        



as dimensões categorias podem ser divididas em cinco formas diversificadas.

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.


paradox of the system of ten dimensions and categories of Graceli.



a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



that is, categories ground the variables of phenomena and their interactions and transformations.



and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



as well as transitions of energies, phenomena, categories and dimensions.

paradoxo do sistema de dez dimensões e categorias de Graceli.

um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

como também transições de energias, fenômenos, categorias e dimensões.







 = entropia reversível

postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].